Article Data

  • Views 444
  • Dowloads 115

Original Research

Open Access

Polymorphisms of p53, GSTM1 and GSTT1, and HPV in uterine cervix adenocarcinoma

  • C.R. Nogueira de Carvalho1,*,
  • I.D.C. Guerreiro da Silva2
  • J.S. Pereira2
  • N.C. Nogueira de Souza2
  • G. Rubino de Azevedo Focchi3
  • J.C.L. Ribalta1

1Department of Gynecology, Universidade Federal de São Paulo/Escola Paulista de Medicina, Brazil

2Laboratory of Molecular Gynecology Universidade Federal de São Paulo/Escola Paulista de Medicina, Brazil

3Department of Pathology, Universidade Federal de São Paulo/Escola Paulista de Medicina, Brazil

DOI: 10.12892/ejgo200806590 Vol.29,Issue 6,November 2008 pp.590-593

Published: 10 November 2008

*Corresponding Author(s): C.R. Nogueira de Carvalho E-mail: carmenrcarvalho@uol.com.br

Abstract

Objective: To analyze the participation of glutathione-S-transferase (GST) M I and T I polymorphisms associated protein p53 polymorphism at codon 72 and in the presence of HPV in the carcinogenesis of uterine cervix adenocarcinoma. Methods: Forty-three samples of uterine cervix adenocarcinoma were studied and 86 samples of endocervical cells of women without tumors formed the control group. The presence of HPV was determined in order to genotype the isoforms of p53 at codon 72, GSTM1. GSTM1*0, GSTT1 and GSTT1*0 which were evaluated by the PCR method. Results: HPV was present in 97.67% of the adenocarcinoma cases and in 31.40% of the control group. Statistical analysis showed differences (p = 0.001) and an OR of 113.3 (CI 95%: 13.67-947.14). GSTT1 and GSTT1*0 analysis showed a significant difference between the groups (p = 0.001) with an OR of 4.58 (CI 95%: 2.041-10.28) (p < 0.001) for the presence of GSTT1*0. When it was associated with HPV OR was 6.6 (CI 95%: 0.04-0.50). Analyses of p53 and GSTM1 and GSTM1*0 either alone or associated with HPV were not significant. Conclusion: The presence of GSTT1*0 increased the risk for uterine cervix adenocarcinoma development while the allele GSTT1 had it protective action. The other isoforms did not appear to participate in the carcinogenesis of uterine cervix adenocarcinoma.

Keywords

p53; GSTM1; GSTT1; HPV; Adenocarcinoma

Cite and Share

C.R. Nogueira de Carvalho,I.D.C. Guerreiro da Silva,J.S. Pereira,N.C. Nogueira de Souza,G. Rubino de Azevedo Focchi,J.C.L. Ribalta. Polymorphisms of p53, GSTM1 and GSTT1, and HPV in uterine cervix adenocarcinoma. European Journal of Gynaecological Oncology. 2008. 29(6);590-593.

References

[1] Romero R., Kuivaniemi H., Tromp G., Olson J.N.: “The design, execution, and interpretation of genetic association studies to decipher complex diseases”. Am. J. Obstet. Gynecol., 2002, 187, 1299.

[2] Storey A., Thomas M., Kalita A. et al.: “Role of a p53 polymorphism in the development of human papillomavirus-associated cancer”. Nature, 1998, 393, 229.

[3] Ueda M., Terai Y., Kanda K. et al.: “Germline plymorphism of p53 codon 72 in gynecological cancer”. Gynecol. Oncol., 2006, 100, 173.

[4] Haupt S., Berge M., Goldberg Z., Haupt Y.: “Apoptosis – the p53 network”. J. Cell Sci., 2003, 116, 4077.

[5] Pietsch E.C., Humbey O., Murphy M.E.: “Polymorphisms in the p53 pathway”. Oncogene, 2006, 25, 1602.

[6] Xu C., Li C.Y.-T., Kong A.-N.T.: “Induction of phase I, II and III drug metabolism/transport by xenobiotics”. Arch. Pharm. Res., 2005, 28, 249.

[7] Hayes J.D., Flanagan J.U., Jowsey I.R.: “Glutathione Transferase”. Annu. Rev. Pharmacol. Toxicol., 2005, 45, 51.

[8] Frova C.: “Glutathione transferase in genomics era: news insights and perspectives”. Biomol. Eng., 2006, 23, 149.

[9] Parl F.F.: “Glutathione S-transferase genotype and cancer risk”. Cancer Lett., 2005, 221, 123.

[10] Rebbeck T.R.: “Molecular epidemiology of the human glutathione- S-transferase genotypes GSTM1 and GSTT1 in cancer susceptibility”. Cancer Epidemiol. Biomarker. Prev., 1997, 6, 733.

[11] Habdous M., Siest G., Herbeth B., Vincent-Viry M., Visvikis S.: “Polymorphismes des glutathion S-transferases et pathologies humaines: bilan des études épidémiologiques”. Ann. Biol. Clin., 2004, 62, 15.

[12] Goodman M.T., McDuffie K., Hernandez B., Bertram C.C., Wilkens L.R., Guo C. et al.: “CYP1A1, GSTM1, and GSTT1, polymorphisms and risk of cervical squamous intraepithelial lesions in a multiethnic population”. Gynecol. Oncol., 2001, 81, 263.

[13] Au W.W., Sierra-Torres C.H., Tyring S.K.: “Acquired and genetic susceptibility to cervical cancer”. Mutat. Res., 2003, 544, 361.

[14] Lee S.A., Kim J.W., Roh J.W., Choi J.Y., Lee K.-M., Yoo K.Y. et al.: “Genetic polymorphisms of GSTM1, p21, p53 and HPV infection with cervical cancer in Korean women”. Gynecol. Oncol., 2004, 93, 14.

[15] Sharma A., Sharma J.K., Murthy N.S., Mitra A.B.: “Polymorphisms at GSTM1 and GSTT1 gene loci and susceptibility to cervical cancer in Indian population”. Neoplasma, 2004, 51, 12.

[16] Haverkos H., Rohrer M., Pickworth W.: “The cause of invasive cervical cancer could de multifactorial”. Biomed. Pharmacoter., 2000, 54, 54.

[17] Pirog E.C., Kleter B., Olgac S., Bobkiewicz P., Lindeman J., Quint W.G. et al.: “Prevalence of human papillomavirus DNA in difference histological subtype of cervical adenocarcinoma”. Am. J. Pathol., 2000, 157, 1055.

[18] Danaei G., Hoorn S.V., lopez A.D., Murray C.J., Ezzati M.: “Comparative Risk Assessment Collaborating Group. Causes of cancer in the world: comparative risk assessment of nine behavioural and environmental risk factors”. Lancet, 2005, 366, 1784.

[19] Castellsagué X., Díaz M., Sanjosé S., Muñoz N., Herrero R., Franceschi S. et al.: “Worldwide human papillomavirus etiology of cervical adenocarcinoma and its cofactors: Implications for screening and prevention”. J. Natl. Cancer Inst., 2006, 98, 303.

[20] Altekruse S.F., Lacey J.V. Jr., Brinton L.A., Gravitt P.E., Silverberg S.G., Barners W.A. Jr.: “Comparison of human papillomavirus genotypes, sexual, and reproductive risk factors of cervical adenocarcinomas and squamous cell carcinoma: Northeastern United States”. Am. J. Obstet. Gynecol., 2003, 188, 657.

[21] Ayhan A., Al R.A., Baykal C., Demirtas E., Yüce K., Ayhan A.: “A comparison of prognoses of FIGO stage IB adenocarcinoma and squamous cell carcinoma”. Int. J. Gynecol. Cancer, 2004, 14, 279.

[22] Recoules-Arche A., Rouzier R., Rey A., Villefranque V., Haie-Meder C., Pautier P. et al.: “Les adenocarcinomas du col utérin ont-ils plus mauvais prognostic que les carcinomas épidermoïdes?”. Gynecol. Obstet. Fertil., 2004, 32, 116.

[23] Chao A., Wang T.H., Lee Y.S., Hsueh S., Chao A.S., Chang T.C. et al.: “Molecular characterization of adenocarcinoma and squamous carcinoma of the uterine cervix using microarray analysis of gene expression”. Int. J. Cancer, 2006, 119, 91.

[24] Cawkwell L., Quirke P.: “Direct multiplex amplification of DNA from a formalin fixed, paraffin wax embedded tissue”. Mod. Pathol., 2000, 53, 51.

[25] Morgan K., Lam L., Kalsheker N.: “A rapid and efficient method for DNA extraction from paraffin wax embedded tissue for PCR amplification”. J. Clin. Pathol. Mol. Pathol., 1996, 49, M179.

[26] Manos M.M., Ting Y., Wright D.K., Lewis A.J., Broke T.R., Wolinsky S.M.: “Use of polymerase amplification for the detection of genital human papillomaviruses”. Cancer Cells, 1989, 7, 209.

[27] Soulitzis N., Sourvinos G., Dokiniakis D.N., Spandidos D.A.: “p53 codon 72 polymorphism and its association with bladder cancer”. Cancer Lett., 2002, 179, 175.

[28] Ueda M., Hung Y.C., Terai Y., Saito J., Nunobiki O., Noda S. et al.: “Glutathione-S-transferase and p53 polymorphisms in cervical carcinogenesis”. Gynecol. Oncol., 2005, 96, 736.

[29] Bulk S., Visser O., Rozendaal L., Verheijen R.H., Meijer C.J.: “Incidence and survival rate of women with cervical cancer in the Greater Amsterdam area”. Br. J. Cancer, 2003, 89, 834.

[30] Lea J.S., Sheets E.E., Wenham R.M., Duska L.R., Coleman R.L., Miller D.S. et al.: “Stage IIB-IVB cervical adenocarcinoma: prognostic factors and survival”. Gynecol. Oncol., 2002, 84, 115.

[31] Baalbergen A., Ewing-Graham P.C., Hop W.C., Struijk P., Helmerhorst T.J.: “Prognostic factors in adenocarcinomas of uterine cervix”. Gynecol. Oncol., 2004, 92, 262.

[32] Hildesheim A., Schiffman M., Brinton L., Fraumeni J.F. Jr., Herrero R., Bratti M.C.: “p53 polymorphism and risk of cervical cancer”. Nature, 1998, 396, 531.

[33] Gustafsson A.C., Guo Z., Hu X., Ahmadian A., Brodin B., Nilsson A. et al.: “HPV-related cancer susceptibility and p53 codon 72 plymorphism”. Acta Derm. Venerol., 2001, 81, 125.

[34] Andersson S., Rylander E., Strand A., Sällström J., Wilander E.: “The significance of p53 codon 72 polymorphism for the development of cervical adenocarcinomas”. Br. J. Cancer, 2001, 85, 1153.

[35] Yang Y.C., Chang C.L., Chen M.L.: “Effect of p53 polymorphism on the susceptibility of cervical cancer”. Gynecol. Obstet. Invest., 2001, 51, 197.

[36] Newton-Cheh C., Hirchhorn J.N.: “Genetic association studies of complex traits design and analysis issues”. Mutat. Res., 2005, 573, 54.

Abstracted / indexed in

Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,500 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.

Biological Abstracts Easily discover critical journal coverage of the life sciences with Biological Abstracts, produced by the Web of Science Group, with topics ranging from botany to microbiology to pharmacology. Including BIOSIS indexing and MeSH terms, specialized indexing in Biological Abstracts helps you to discover more accurate, context-sensitive results.

Google Scholar Google Scholar is a freely accessible web search engine that indexes the full text or metadata of scholarly literature across an array of publishing formats and disciplines.

JournalSeek Genamics JournalSeek is the largest completely categorized database of freely available journal information available on the internet. The database presently contains 39226 titles. Journal information includes the description (aims and scope), journal abbreviation, journal homepage link, subject category and ISSN.

Current Contents - Clinical Medicine Current Contents - Clinical Medicine provides easy access to complete tables of contents, abstracts, bibliographic information and all other significant items in recently published issues from over 1,000 leading journals in clinical medicine.

BIOSIS Previews BIOSIS Previews is an English-language, bibliographic database service, with abstracts and citation indexing. It is part of Clarivate Analytics Web of Science suite. BIOSIS Previews indexes data from 1926 to the present.

Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.

Submission Turnaround Time

Conferences

Top