Article Data

  • Views 439
  • Dowloads 122

Original Research

Open Access

Differential gene expression analysis of ovarian cancer in a population isolate

  • D. Grazio1
  • I. Pichler1
  • C. Fuchsberger1
  • F. Zolezzi2
  • P. Guarnieri2
  • H. Heidegger3
  • A. Scherer4
  • B. Engl5
  • S. Messini6
  • E. Egarter-Vigl7
  • P.P. Pramstaller1,8,9*,

1Institute of Genetic Medicine, European Academy of Bolzano, Bolzano

2Axxam, San Raffaele Biomedical Science Park, Milano

3Department of Gynaecology, Hospital of Merano, Merano

4Department of Gynaecology, Hospital of Bressanone, Bressanone

5Department of Gynaecology, Hospital of Brunico, Brunico

6Department of Gynaecology, Hospital of Bolzano, Bolzano

7Department of Pathology, General Regional Hospital of Bolzano, Bolzano

8Department of Neurology, General Regional Hospital of Bolzano, Bolzano, Italy

9Department of Neurology, University of Lübeck, Lübeck, Germany

DOI: 10.12892/ejgo200804357 Vol.29,Issue 4,July 2008 pp.357-363

Published: 10 July 2008

*Corresponding Author(s): P.P. Pramstaller E-mail: peter.pramstaller@eurac.edu

Abstract

Gene expression products represent candidate biomarkers with the potential for early screening and therapy of patients with ovarian serous carcinoma. The present study, using patients that originate from the population isolate of South Tyrol, Italy, substantiates the feasibility of differential gene expression analysis in a genetically isolated population for the identification of potential markers of ovarian cancer. Gene expression profiles of fresh-frozen ovarian serous papillary carcinoma samples were analyzed and compared to normal ovarian control tissues using oligonucleotide microarrays complementary to 14,500 human genes. Supervised analysis of gene expression profiling data identified 225 genes that are down-regulated and 635 that are up-regulated in malignant compared to normal ovarian tissues. Class-prediction analysis identified 40 differentially expressed genes for further investigation as potential classifiers for ovarian cancer, including 20 novel candidates. Our findings provide a glimpse into the potential of population isolate genomics in oncological research.

Keywords

Gene expression analysis; Microarray; Ovarian cancer; Molecular marker; Population isolate

Cite and Share

D. Grazio,I. Pichler,C. Fuchsberger,F. Zolezzi,P. Guarnieri,H. Heidegger,A. Scherer,B. Engl,S. Messini,E. Egarter-Vigl,P.P. Pramstaller. Differential gene expression analysis of ovarian cancer in a population isolate. European Journal of Gynaecological Oncology. 2008. 29(4);357-363.

References

[1] Sawiris G.P., Sherman-Baust C.A., Becker K.G., Cheadle C., Teichberg D., Morin P.J.: “Development of a highly specialized cDNA array for the study and diagnosis of epithelial ovarian cancer”. Cancer Res., 2002, 62, 2923.

[2] Agarwal R., Kaye S.B.: “Prognostic factors in ovarian cancer: how close are we to a complete picture?”. Ann. Oncol., 2005, 16, 4.

[3] Schaner M.E., Ross D.T., Ciaravino G., Sorlie T., Troyanskaya O., Diehn M. et al.: “Gene expression patterns in ovarian carcinomas”. Mol. Biol. Cell., 2003, 14, 4376.

[4] Ono K., Tanaka T., Tsunoda T., Kitahara O., Kihara C., Okamoto A. et al.: “Identification by cDNA microarray of genes involved in ovarian carcinogenesis”. Cancer Res., 2000, 60, 5007.

[5] Welsh J.B., Zarrinkar P.P., Sapinoso L.M., Kern S.G., Behling C.A., Monk B.J. et al.: “Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer”. Proc. Natl. Acad. Sci USA, 2001, 98, 1176.

[6] Holschneider C.H., Berek J.S.: “Ovarian cancer: epidemiology, biology, and prognostic factors”. Semin. Surg. Oncol., 2000, 19, 3.

[7] Habeck M.: “DNA microarray technology to revolutionise cancer treatment”. Lancet Oncol., 2001, 2, 5.

[8] Raetz E.A., Moos P.J.: “Impact of microarray technology in clinical oncology”. Cancer Invest., 2004, 22, 312.

[9] Pattaro C., Marroni F., Riegler A., Mascalzoni D., Pichler I., Volpato C.B. et al.: “The genetic study of three population microisolates in South Tyrol (MICROS): study design and epidemiological perspectives”. BMC Med. Genet., 2007, 8, 29.

[10] Varilo T., Peltonen L.: “Isolates and their potential use in complex gene mapping efforts”. Curr. Opin. Genet. Dev., 2004, 14, 316.

[11] Vezina H., Durocher F., Dumont M., Houde L., Szabo C., Tranchant M. et al.: “Molecular and genealogical characterization of the R1443X BRCA1 mutation in high-risk French-Canadian breast/ovarian cancer families”. Hum. Genet., 2005, 117, 119.

[12] Ihaka R., Gentleman R.R.: “A Language for Data Analysis and Graphics”. J. Comp. Graph. Stat., 1996, 5, 299.

[13] Tusher V.G., Tibshirani R., Chu G.: “Significance analysis of microarrays applied to the ionizing radiation response”. Proc. Natl. Acad. Sci USA, 2001, 98, 5116.

[14] Tibshirani R., Hastie T., Narasimhan B., Chu G.: “Diagnosis of multiple cancer types by shrunken centroids of gene expression”. Proc. Natl. Acad. Sci USA, 2002, 99, 6567.

[15] Hibbs K., Skubitz K.M., Pambuccian S.E., Casey R.C., Burleson K.M., Oegema T.R. Jr. et al.: “Differential gene expression in ovarian carcinoma: identification of potential biomarkers”. Am. J. Pathol., 2004, 165, 397.

[16] Macgregor P.F.: “Gene expression in cancer: the application of microarrays”. Expert. Rev. Mol. Diagn., 2003, 3, 185.

[17] Peltonen L., Palotie A., Lange K.: “Use of population isolates for mapping complex traits”. Nat. Rev. Genet., 2000, 1, 182.

[18] Rafnar T., Thorlacius S., Steingrimsson E., Schierup M.H., Madsen J.N., Calian V. et al.: “The Icelandic Cancer Project-a population-wide approach to studying cancer”. Nat. Rev. Cancer, 2004, 4, 488.

[19] Marroni F., Pichler I., De Grandi A., Beu Volpato C., Vogl F.D., Pinggera G.K. et al.: “Population isolates in South Tyrol and their value for genetic dissection of complex diseases”. Ann. Hum. Genet., 2006, 70, 812.

[20] Pichler I., Mueller J.C., Stefanov S.A., De Grandi A., Volpato C.B., Pinggera G.K. et al.: “Genetic structure in contemporary south Tyrolean isolated populations revealed by analysis of Ychromosome, mtDNA, and Alu polymorphisms”. Hum. Biol., 2006, 78, 441.

[21] Cheung V.G., Conlin L.K., Weber T.M., Arcaro M., Jen K.Y., Morley M. et al.: “Natural variation in human gene expression assessed in lymphoblastoid cells”. Nat. Genet., 2003, 33, 422.

[22] Kristiansen G., Denkert C., Schluns K., Dahl E., Pilarsky C., Hauptmann S.: “CD24 is expressed in ovarian cancer and is a new independent prognostic marker of patient survival”. Am. J. Pathol., 2002, 161, 1215.

[23] Adib T.R., Henderson S., Perrett C., Hewitt D., Bourmpoulia D., Ledermann J. et al.: “Predicting biomarkers for ovarian cancer using gene-expression microarrays”. Br. J. Cancer, 2004, 90, 686.

[24] Santin A.D., Zhan F., Bellone S., Palmieri M., Cane S., Bignotti E. et al.: “Gene expression profiles in primary ovarian serous papillary tumors and normal ovarian epithelium: identification of candidate molecular markers for ovarian cancer diagnosis and therapy”. Int. J. Cancer, 2004, 112, 14.

[25] Surowiak P., Materna V., Kaplenko I., Spaczynski M., Dietel M., Kristiansen G. et al.: “Unfavorable prognostic value of CD24 expression in sections from primary and relapsed ovarian cancer tissue”. Int. J. Gynecol. Cancer, 2006, 16, 515.

[26] Shridhar V., Lee J., Pandita A., Iturria S., Avula R., Staub J. et al.: “Genetic analysis of early - versus late-stage ovarian tumors”. Cancer Res., 2001, 61, 5895.

[27] Shridhar V., Sen A., Chien J., Staub J., Avula R., Kovats S. et al.: “Identification of underexpressed genes in early - and late-stage primary ovarian tumors by suppression subtraction hybridization”. Cancer Res., 2002, 62, 262.

[28] Akaishi J., Onda M., Okamoto J., Miyamoto S., Nagahama M., Ito K. et al.: “Down-regulation of transcription elogation factor A (SII) like 4 (TCEAL4) in anaplastic thyroid cancer”. BMC Cancer, 2006, 6, 260.

[29] Le Page C., Ouellet V., Madore J., Ren F., Hudson T.J., Tonin P.N. et al.: “Gene expression profiling of primary cultures of ovarian epithelial cells identifies novel molecular classifiers of ovarian cancer”. Br. J. Cancer, 2006, 94, 436.

[30] Nash M.A., Loercher A.E., Freedman R.S.: “In vitro growth inhibition of ovarian cancer cells by decorin: synergism of action between decorin and carboplatin”. Cancer Res., 1999, 59, 6192.

[31] Wang F., Zhu Y., Huang Y., McAvoy S., Johnson W.B., Cheung T.H. et al.: “Transcriptional repression of WEE1 by Kruppel-like factor 2 is involved in DNA damage-induced apoptosis”. Oncogene, 2005, 24, 3875.

[32] Rowland B.D., Bernards R., Peeper D.S.: “The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a contextdependent oncogene”. Nat. Cell. Biol., 2005, 7, 1074.

[33] Yin D., Komatsu N., Miller C.W., Chumakov A.M., Marschesky A., McKenna R. et al.: “KLF6: mutational analysis and effect on cancer cell proliferation”. Int. J. Oncol., 2007, 30, 65.

[34] Reed C.C., Gauldie J., Iozzo R.V.: “Suppression of tumorigenicity by adenovirus-mediated gene transfer of decorin”. Oncogene, 2002, 21, 3688.

[35] McDoniels-Silvers A.L., Nimri C.F., Stoner G.D., Lubet R.A., You M.: “Differential gene expression in human lung adenocarcinomas and squamous cell carcinomas”. Clin. Cancer Res., 2002, 8, 1127.

[36] Biglari A., Bataille D., Naumann U., Weller M., Zirger J., Castro M.G. et al.: “Effects of ectopic decorin in modulating intracranial glioma progression in vivo, in a rat syngeneic model”. Cancer Gene Ther., 2004, 11, 721.

[37] Zhu J.X., Goldoni S., Bix G., Owens R.T., McQuillan D.J., Reed C.C. et al.: “Decorin evokes protracted internalization and degradation of the epidermal growth factor receptor via caveolar endocytosis”. J. Biol. Chem., 2005, 280, 32468.

[38] Liu Y., Gao L., Gelman I.H.: “SSeCKS/Gravin/AKAP12 attenuates expression of proliferative and angiogenic genes during suppression of v-Src-induced oncogenesis”. BMC Cancer, 2006, 6, 105.

[39] Deng Y., Yao L., Chau L., Ng S.S., Peng Y., Liu X. et al.: “N-Myc downstream-regulated gene 2 (NDRG2) inhibits glioblastoma cell proliferation”. Int. J. Cancer, 2003, 106, 342.

[40] Qu X., Zhai Y., Wei H., Zhang C., Xing G., Yu Y. et al.: “Characterization and expression of three novel differentiation-related genes belong to the human NDRG gene family”. Mol. Cell. Biochem., 2002, 229, 35.

[41] Cal S., Arguelles J.M., Fernandez P.L., Lopez-Otin C.: “Identification, characterization, and intracellular processing of ADAMTS12, a novel human disintegrin with a complex structural organization involving multiple thrombospondin-1 repeats”. J. Biol. Chem., 2001, 276, 17932.

[42] Rowland B.D., Peeper D.S.: “KLF4, p21 and context-dependent opposing forces in cancer”. Nat. Rev. Cancer, 2006, 6, 11.

[43] Wei D., Kanai M., Huang S., Xie K.: “Emerging role of KLF4 in human gastrointestinal cancer”. Carcinogenesis, 2006, 27, 23.

[44] Hamik A., Lin Z., Kumar A., Balcells M., Sinha S., Katz J. et al.: “Kruppel-like factor 4 regulates endothelial inflammation”. J. Biol. Chem., 2007.

[45] Alaishi J., Onda M., Okamoto J., Miyamoto S., Nagahama M., Ito K. et al.: “Down-regulation of transcription elongation factor A (SII) like 4 (TCEAL4) in anaplastic thyroid cancer”. BMC cancer, 2006, 6, 260.

Abstracted / indexed in

Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,500 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.

Biological Abstracts Easily discover critical journal coverage of the life sciences with Biological Abstracts, produced by the Web of Science Group, with topics ranging from botany to microbiology to pharmacology. Including BIOSIS indexing and MeSH terms, specialized indexing in Biological Abstracts helps you to discover more accurate, context-sensitive results.

Google Scholar Google Scholar is a freely accessible web search engine that indexes the full text or metadata of scholarly literature across an array of publishing formats and disciplines.

JournalSeek Genamics JournalSeek is the largest completely categorized database of freely available journal information available on the internet. The database presently contains 39226 titles. Journal information includes the description (aims and scope), journal abbreviation, journal homepage link, subject category and ISSN.

Current Contents - Clinical Medicine Current Contents - Clinical Medicine provides easy access to complete tables of contents, abstracts, bibliographic information and all other significant items in recently published issues from over 1,000 leading journals in clinical medicine.

BIOSIS Previews BIOSIS Previews is an English-language, bibliographic database service, with abstracts and citation indexing. It is part of Clarivate Analytics Web of Science suite. BIOSIS Previews indexes data from 1926 to the present.

Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.

Submission Turnaround Time

Conferences

Top