Article Data

  • Views 411
  • Dowloads 143

Reviews

Open Access

Genetic polymorphisms, the metabolism of estrogens and breast cancer: a review

  • D.D.G. Bugano1,*,
  • N. Conforti-Froes2
  • N.H. Yamaguchi3
  • E.C. Baracat4

1Department of Medicine, University of São Paulo, Brazil

2Department of Genomic Division, Laboratory of Salomao & Zoppi Diagnostic Medicine, Brazil

3Oncology Department, University of São Paulo, Brazil

4Department of Gynecology, “Hospital das Clinicas”, University of São Paulo, SP, Brazil

DOI: 10.12892/ejgo200804313 Vol.29,Issue 4,July 2008 pp.313-320

Published: 10 July 2008

*Corresponding Author(s): D.D.G. Bugano E-mail: diogobugano@gmail.com

Abstract

Breast cancer is the most common female cancer and the second cause of cancer death in women. Despite recent breakthroughs, much of the etiology of this disease is unknown and the most important risk factor, i.e., exposure to endogenous and exogenous estrogen throughout life cannot explain the heterogeneity of prognosis nor clinical features of patients. Recently, many gene polymorphisms in the metabolism of breast cancer have been described as possible neoplasm etiologic factors. This review is an attempt to summarize the current knowledge about these polymorphisms and to determine new target genes for diagnosis and treatment of the disease. Polymorphisms in the genes CYP17, CYP19, CYP1A1, CYP1A2, CYP1B1, UGT1A1, SULT1A1, 17-hydroxysteroiddehydrogenase, COMT GST ESR1, and ESR2 are described.

Keywords

Breast cancer; Metabolism of estrogens; Estrogen receptors; Polymorphisms; Metabolizing genes

Cite and Share

D.D.G. Bugano,N. Conforti-Froes,N.H. Yamaguchi,E.C. Baracat. Genetic polymorphisms, the metabolism of estrogens and breast cancer: a review. European Journal of Gynaecological Oncology. 2008. 29(4);313-320.

References

[1] Fu Y.P., Yu J.C., Cheng T.C., Lou M.A., Hsu G.C., Wu C.Y. et al.: “Breast cancer risk associated with genotypic polymorphism of the nonhomologous end-joining genes: a multigenic study on cancer susceptibility”. Cancer Res., 2003, 63, 2440.

[2] The Framingham Heart Study webpage. http://www nhlbi nihgov/about/framingham/index html 2007.

[3] Adams S., Matthews C., Hebert J., Moore C., Cunningham J., Shu, X. et al.: “Association of Physical Activity with Hormone Receptor Status: The Shanghai Breast Cancer Study”. Cancer Epidemiol. Biomarkers Prev., 2006, 15, 1170.

[4] Rogan E., Badawi A., Devanesan P., Meza J., Edney J., West W. et al.: “Relative imbalances in estrogen metabolism and conjugation in breast tissue of women with carcinoma: potential biomarkers of susceptibility to cancer”. Carcinogenesis, 2003, 24, 697.

[5] Lee K.M., Choi J.Y., Kang C., Kang C.P., Park S.K., Cho H. et al.: “Genetic polymorphisms of selected DNA repair genes, estrogen and progesterone receptor status, and breast cancer risk”. Clin. Cancer Res., 2005, 11, 4620.

[6] Fan C., O. D.S., Wessels L., Weigelt B., Nuyten D.S., Nobel A.B., van’t Veer L.J. et al.: “Concordance among gene-expression-based predictors for breast cancer”. N. Engl. J. Med., 2006, 355, 560.

[7] Yager J.D., Davidson N.E.: “Estrogen Carcinogenesis in Breast Cancer”. N. Engl. J. Med., 2006, 354, 270.

[8] Adlercreutz H., Gorbach B.R., Goldin M.N., Woods J.T., Dwyer F.: “Estrogen metabolism and excretion in Oriental and Caucasian women”. J. Natl. Cancer Inst., 1994, 86, 1076.

[9] Clemons M., Goss P.: “Estrogen and the risk of breast cancer”. N. Engl. J. Med., 2001, 344, 276.

[10] Liehr J.H.: “Is estradiol a genotoxic mutagenic carcinogen?”. Endocr. Rev., 2000, 21, 40.

[11] Conneely O.: “Perspective: female steroid hormone action”. Endocrinology, 2001, 142, 2194.

[12] Zheng S.L., Zheng W., Chang B.L., Shu X.O., Cai Q., Yu H. et al.: “Joint effect of estrogen receptor beta sequence variants and endogenous estrogen exposure on breast cancer risk in Chinese women”. Cancer Res., 2003, 63, 7624.

[13] Sharp L., Cardy A.H., Cotton S.C., Little J.: “CYP17 gene polymorphisms: prevalence and associations with hormone levels and related factors: a HuGE review”. Am. J. Epidemiol., 2004, 160, 729.

[14] Haiman C.A., Hankinson S.E., Spiegelman D., Colditz G.A., Willett W.C., Speizer F.E. et al.: “The relationship between a polymorphism in CYP17 with plasma hormone levels and breast cancer”. Cancer Res., 1999, 59, 1015.

[15] Feigelson H.S., Shames L.S., Pike M.C., Coetzee G.A., Stanczyk F.Z., Henderson B.E.: “Cytochrome P450c17alpha gene (CYP17) polymorphism is associated with serum estrogen and progesterone concentrations”. Cancer Res., 1998, 58, 585.

[16] Abrahamson P.E., Tworoger S.S., Aiello E.J., Bernstein L., Ulrich, C.M., Gilliland F.D. et al.: “Associations between the CYP17, CYPIB1, COMT and SHBG polymorphisms and serum sex hormones in post-menopausal breast cancer survivors”. Breast Cancer Res. Treat., 2006, 105, 45.

[17] Tworoger S.S., Chubak J., Aiello E.J., Ulrich C.M., Atkinson C., Potter J.D. et al.: “Association of CYP17, CYP19, CYP1B1, and COMT polymorphisms with serum and urinary sex hormone concentrations in postmenopausal women”. Cancer Epidemiol. Biomarkers Prev., 2004, 13, 94.

[18] Greenlee H., Chen Y., Kabat G.C., Wang Q., Kibriya M.G., Gurvich I. et al.: “Variants in estrogen metabolism and biosynthesis genes and urinary estrogen metabolites in women with a family history of breast cancer”. Breast Cancer Res. Treat., 2006, 102, 111.

[19] Artamonov V.V., Liubchenko L.N., Shabanov M.A., Babenko O.V., Nemtsova M.V., Zaletaev D.V.: “Association of polymorphism of genetic markers of CYP19 and CYP17 with sporadic breast cancer”. Mol. Biol. (Mosk), 2003, 37, 975.

[20] Chakraborty A., Murthy N.S., Chintamani C., Bhatnagar D., Mohil R.S., Sharma P.C. et al.: “CYP17 gene polymorphism and its association with high-risk north Indian breast cancer patients”. J. Hum. Genet., 2007, 52, 156.

[21] Bergman-Jungestrom M., Gentile M., Lundin A.C., Wingren S.: “Association between CYP17 gene polymorphism and risk of breast cancer in young women”. Int. J. Cancer, 1999, 84, 350.

[22] Feigelson H.S., Kean-Cowdin R., Coetzee G.A., Stram D.O., Kolonel L.N., Henderson B.E.: “Building a multigenic model of breast cancer susceptibility: CYP17 and HSD17B1 are two important candidates”. Cancer Res., 2001, 61, 785.

[23] Feigelson H.S., Coetzee G.A., Kolonel L.N., Ross R.K., Henderson B.E.: “A polymorphism in the CYP17 gene increases the risk of breast cancer”. Cancer Res., 1997, 57, 1063.

[24] Chacko P., Rajan B., Mathew B.S., Joseph T., Pillai M.R.: “CYP17 and SULT1A1 gene polymorphisms in Indian breast cancer”. Breast Cancer, 2004, 11, 380.

[25] Hu M.B., Xie W., Xiong B., Han D.F., Li Y., Feng M.H. et al.: “Study on the relationship between polymorphisms of genes (CYP17, CYP19 and SULT1A1) and susceptibility to breast cancer in Chinese women”. Zhonghua Liu Xing Bing Xue Za Zhi, 2006, 27, 351.

[26] Ahsan H., Whittemore A.S., Chen Y., Senie R.T., Hamilton S.P., Wang Q. et al.: “Variants in estrogen-biosynthesis genes CYP17 and CYP19 and breast cancer risk: a family-based genetic association study”. Breast Cancer Res., 2005, 7, R71.

[27] Helzlsouer K.J., Huang H.Y., Strickland P.T., Hoffman S., Alberg A.J., Comstock G.W. et al.: “Association between CYP17 polymorphisms and the development of breast cancer”. Cancer Epidemiol. Biomarkers Prev., 1998, 7, 945.

[28] Einarsdottir K., Rylander-Rudqvist T., Humphreys K., Ahlberg S., Jonasdottir G., Weiderpass E. et al.: “CYP17 gene polymorphism in relation to breast cancer risk: a case-control study”. Breast Cancer Res., 2005, 7, R890.

[29] Chang J.H., Gertig D.M., Chen X., Dite G.S., Jenkins M.A., Milne R.L. et al.: “CYP17 genetic polymorphism, breast cancer, and breast cancer risk factors: Australian Breast Cancer Family Study”. Breast Cancer Res., 2005, 7, R513.

[30] Verla-Tebit E., Wang-Gohrke S., Chang-Claude J.: “CYP17 5'-UTR MspA1 polymorphism and the risk of premenopausal breast cancer in a German population-based case-control study”. Breast Cancer Res., 2005, 7, R455.

[31] Tan W., Qi J., Xing D.Y., Miao X.P., Pan K.F., Zhang L. et al.: “Relation between single nucleotide polymorphism in estrogenmetabolizing genes COMT, CYP17 and breast cancer risk among Chinese women”. Zhonghua Zhong Liu Za Zhi, 2003, 25, 453.

[32] Wu A.H., Seow A., Arakawa K., Van Den B.D., Lee H.P., Yu M.C.: “HSD17B1 and CYP17 polymorphisms and breast cancer risk among Chinese women in Singapore”. Int. J. Cancer, 2003, 104, 450.

[33] Baxter S.W., Choong D.Y., Eccles D.M., Campbell I.G.: “Polymorphic variation in CYP19 and the risk of breast cancer”. Carcinogenesis, 2001, 22, 347.

[34] Healey C.S., Dunning A.M., Durocher F., Teare D., Pharoah P.D., Luben R.N. et al.: “Polymorphisms in the human aromatase cytochrome P450 gene (CYP19) and breast cancer risk”. Carcinogenesis, 2000, 21, 189.

[35] Olson J.E., Ingle J.N., Ma C.X., Pelleymounter L.L., Schaid D.J., Pankratz V.S. et al.: “A comprehensive examination of CYP19 variation and risk of breast cancer using two haplotype-tagging approaches”. Breast Cancer Res. Treat., 2006, 102, 237.

[36] Han D.F., Zhou X., Hu M.B., Xie W., Mao Z.F., Chen D.E. et al.: “Polymorphisms of estrogen-metabolizing genes and breast cancer risk: a multigenic study”. Chin. Med. J. (Engl.), 2005, 118, 1507.

[37] Taioli E., Bradlow H.L., Garbers S.V., Sepkovic D.W., Osborne M.P., Trachman J. et al.: “Role of estradiol metabolism and CYP1A1 polymorphisms in breast cancer risk”. Cancer Detect. Prev., 1999, 23, 232.

[38] Taioli E., Trachman J., Chen X., Toniolo P., Garte S.J.: “A CYP1A1 restriction fragment length polymorphism is associated with breast cancer in African-American women”. Cancer Res., 1995, 55, 3757.

[39] Ishitobi M., Miyoshi Y., Ando A., Hasegawa S., Egawa C., Tamaki, Y. et al.: “Association of BRCA2 polymorphism at codon 784 (Met/Val) with breast cancer risk and prognosis”. Clin. Cancer Res., 2003, 9, 1376.

[40] Modugno F., Knoll C., Kanbour-Shakir A., Romkes M.: “A potential role for the estrogen-metabolizing cytochrome-P450 enzymes in human breast carcinogenesis”. Breast Can. Res. and Treat., 2003, 82, 191.

[41] Boyapati S.M., Shu X.O., Gao Y.T., Cai Q., Jin F., Zheng W.: “Polymorphisms in CYP1A1 and breast carcinoma risk in a population- based case-control study of Chinese women”. Cancer, 2005, 103, 2228.

[42] Huang C.S., Shen C.Y., Chang K.J., Hsu S.M., Chern H.D. : “Cytochrome P4501A1 polymorphism as a susceptibility factor for breast cancer in postmenopausal Chinese women in Taiwan”. Br. J. Cancer, 1999, 80, 1838.

[43] Singh V., Rastogi N., Sinha A., Kumar A., Mathur N., Singh M.P.: “A study on the association of cytochrome-P450 1A1 polymorphism and breast cancer risk in North Indian women”. Breast Cancer Res. Treat., 2007, 101, 73.

[44] Fontana X., Peyrottes I., Rossi C., Leblanc-Talent P., Ettore F., Namer M. et al.: “Study of the frequencies of CYP1A1 gene polymorphisms and glutathione S-transferase mu1 gene in primary breast cancers: an update with an additional 114 cases”. Mutat. Res., 1998, 403, 45.

[45] Lam M.S.M.: “Genetic polymorphisms in AH receptor and cytochrome P450 drug-metabolizing enzymes in relation to estradiol metabolism and breast cancer susceptibility”. 2001. http://www.collectionscanada.gc.ca/obj/s4/f2/dsk1/tape4/PQDD_0021/MQ54164.pdf

[46] Todesco L., Torok M., Krahenbuhl S., Wenk M.: “Determination of -3858G-->A and -164C-->A genetic polymorphisms of CYP1A2 in blood and saliva by rapid allelic discrimination: large difference in the prevalence of the -3858G-->A mutation between Caucasians and Asians”. Eur. J. Clin. Pharmacol., 2003, 59, 343.

[47] Lurie G., Maskarinec G., Kaaks R., Stanczyk F.Z., Le M.L.: “Association of genetic polymorphisms with serum estrogens measured multiple times during a 2-year period in premenopausal women”. Cancer Epidemiol. Biomarkers Prev., 2005, 14, 1521.

[48] Long J.R., Egan K.M., Dunning L., Shu X.O., Cai Q., Cai H. et al.: “Population-based case-control study of AhR (aryl hydrocarbon receptor) and CYP1A2 polymorphisms and breast cancer risk”. Pharmacogenet. Genomics, 2006, 16, 237.

[49] Le M.L., Donlon T., Kolonel L.N., Henderson B.E., Wilkens L.R.: “Estrogen metabolism-related genes and breast cancer risk: the multiethnic cohort study”. Cancer Epidemiol. Biomarkers Prev., 2005, 14, 1998.

[50] Tang Y.M., Green B.L., Chen G.F., Thompson P.A., Lang N.P., Shinde A. et al.: “Human CYP1B1 Leu432Val gene polymorphism: ethnic distribution in African-Americans, Caucasians and Chinese; oestradiol hydroxylase activity; and distribution in prostate cancer cases and controls”. Pharmacogenetics, 2000, 10, 761.

[51] Bailey L.R., Roodi N., Dupont W.D., Parl F.F.: “Association of cytochrome P450 1B1 (CYP1B1) polymorphism with steroid receptor status in breast cancer”. Cancer Res., 1998, 58, 5038.

[52] Zimarina T.C., Kristensen V.N., Imianitov E.N., Bershtein L.M.: “Polymorphisms of CYP1B1 and COMT in breast and endometrial cancer”. Mol. Biol. (Mosk), 2004, 38, 386.

[53] Saintot M., Malaveille C., Hautefeuille A., Gerber M.: “Interactions between genetic polymorphism of cytochrome P450-1B1, sulfotransferase 1A1, catechol-o-methyltransferase and tobacco exposure in breast cancer risk”. Int. J. Cancer, 2003, 107, 652.

[54] Rylander-Rudqvist T., Wedren S., Granath F., Humphreys K., Ahlberg S., Weiderpass E. et al.: “Cytochrome P450 1B1 gene polymorphisms and postmenopausal breast cancer risk”. Carcinogenesis, 2003, 24, 1533.

[55] De V.I., Hankinson S.E., Li L., Colditz G.A., Hunter D.J.: “Association of CYP1B1 polymorphisms and breast cancer risk”. Cancer Epidemiol. Biomarkers Prev., 2002, 11, 489.

[56] Paracchini V., Raimondi S., Gram I.T., Kang D., Kocabas N.A., Kristensen V.N. et al.: “Meta- and Pooled Analyses of the Cytochrome P-450 1B1 Val432Leu Polymorphism and Breast Cancer: A HuGE-GSEC Review”. Am. J. Epidemiol., 2007, 165, 115.

[57] Kocabas N.A., Sardas S., Cholerton S., Daly A.K., Karakaya A.E.: “Cytochrome P450 CYP1B1 and catechol O-methyltransferase (COMT) genetic polymorphisms and breast cancer susceptibility in a Turkish population”. Arch. Toxicol., 2002, 76, 643.

[58] Wen W., Cai Q., Shu X.O., Cheng J.R., Parl F., Pierce L. et al.: “Cytochrome P450 1B1 and catechol-O-methyltransferase genetic polymorphisms and breast cancer risk in Chinese women: results from the shanghai breast cancer study and a meta-analysis”. Cancer Epidemiol. Biomarkers Prev., 2005, 14, 329.

[59] Marsh S., Somlo G., Li X., Frankel P., King C.R., Shannon W.D. et al.: “Pharmacogenetic analysis of paclitaxel transport and metabolism genes in breast cancer”. Pharmacogenomics J., 2007, 7, 362.

[60] Adegoke O.J., Shu X.O., Gao Y.T., Cai Q., Breyer J., Smith J. et al.: “Genetic polymorphisms in uridine diphospho-glucuronosyltransferase 1A1 (UGT1A1) and risk of breast cancer”. Breast Cancer Res. Treat., 2004, 85, 239.

[61] Haiman C.A., Hankinson S.E., De V.I., Guillemette C., Ishibe N., Hunter D.J. et al.: “Polymorphisms in steroid hormone pathway genes and mammographic density”. Breast Cancer Res. Treat., 2003, 77, 27.

[62] Shatalova E.G., Loginov V.I., Braga E.A., Kazubskaia T.P., Sudomoina M.A., Blanchard R.L. et al.: “Association of polymorphisms in SULT1A1 and UGT1A1 Genes with breast cancer risk and phenotypes in Russian women”. Mol. Biol. (Mosk), 2006, 40, 263.

[63] Sparks R., Ulrich C.M., Bigler J., Tworoger S.S., Yasui Y., Rajan K.B. et al.: “UDP-glucuronosyltransferase and sulfotransferase polymorphisms, sex hormone concentrations, and tumor receptor status in breast cancer patients”. Breast Cancer Res., 2004, 6, R488.

[64] Langsenlehner U., Krippl P., Renner W., Yazdani-Biuki B., Eder T., Wolf G. et al.: “Genetic variants of the sulfotransferase 1A1 and breast cancer risk”. Breast Cancer Res. Treat., 2004, 87, 19.

[65] Zheng W., Xie D., Cerhan J.R., Sellers T.A., Wen W., Folsom A.R.: “Sulfotransferase 1A1 polymorphism, endogenous estrogen exposure, welldone meat intake, and breast cancer risk”. Cancer Epidemiol. Biomarkers Prev., 2001, 10, 89.

[66] Nowell S., Sweeney C., Winters M., Stone A., Lang N.P., Hutchins L.F. et al.: “Association between sulfotransferase 1A1 genotype and survival of breast cancer patients receiving tamoxifen therapy”. J. Natl Cancer Inst., 2002, 94, 1635.

[67] Yang G., Gao Y.T., Cai Q.Y., Shu X.O., Cheng J.R., Zheng W.: “Modifying effects of sulfotransferase 1A1 gene polymorphism on the association of breast cancer risk with body mass index or endogenous steroid hormones”. Breast Cancer Res. Treat., 2005, 94, 63.

[68] Han D.F., Zhou X., Hu M.B., Wang C.H., Xie W., Tan X.D. et al.: “Sulfotransferase 1A1 (SULT1A1) polymorphism and breast cancer risk in Chinese women”. Toxicol Lett., 2004, 150, 167

[69] Han D.F., Zhou X., Hu M.B., Wang C.H., Xie W., Zheng F. et al.: “The association of sulfotransferase1A1 His allele and breast cancer in Han ethnic Chinese women”. Zhonghua Yi Xue Za Zhi, 2003, 83, 1759.

[70] Setiawan V.W., Hankinson S.E., Colditz G.A., Hunter D.J., De V. I.: “HSD17B1 gene polymorphisms and risk of endometrial and breast cancer”. Cancer Epidemiol. Biomarkers Prev., 2004, 13, 213.

[71] Lavigne J.A., Helzlsouer K.J., Huang H.Y., Strickland P.T., Bell D.A., Selmin O. et al.: “An association between the allele coding for a low activity variant of catechol-O-methyltransferase and the risk for breast cancer”. Cancer Res., 1997, 57, 5493.

[72] Thompson P.A., Shields P.G., Freudenheim J.L., Stone A., Vena J.E., Marshall J.R. et al.: “Genetic polymorphisms in catechol-Omethyltransferase, menopausal status, and breast cancer risk”. Cancer Res., 1998, 58, 2107.

[73] Lin W.Y., Chou Y.C., Wu M.H., Jeng Y.L., Huang H.B., You S.L. et al.: “Polymorphic catechol-O-methyltransferase gene, duration of estrogen exposure, and breast cancer risk: a nested case-control study in Taiwan”. Cancer Detect Prev., 2005, 29, 427.

[74] Gaudet M.M., Chanock S., Lissowska J., Berndt S.I., Peplonska B., Brinton L.A. et al.: “Comprehensive assessment of genetic variation of catechol-O-methyltransferase and breast cancer risk”. Cancer Res., 2006, 66, 9781

[75] Wedren S., Rudqvist T.R., Granath F., Weiderpass E., Ingelman-Sundberg M., Persson I. et al.: “Catechol-O-methyltransferase gene polymorphism and post-menopausal breast cancer risk”. Carcinogenesis, 2003, 24, 681.

[76] Millikan R.C., Pittman G.S., Tse C.K., Duell E., Newman B., Savitz D. et al.: “Catechol-O-methyltransferase and breast cancer risk”. Carcinogenesis, 1998, 19, 1943.

[77] Yim D.S., Parkb S.K., Yoo K.Y., Yoon K.S., Chung H.H., Kang H.L. et al.: “Relationship between the Val158Met polymorphism of catechol O-methyl transferase and breast cancer”. Pharmacogenetics, 2001, 11, 279.

[78] Rebbeck T.R., Godwin A.K., Buetow K.H.: “Variability in loss of constitutional heterozygosity across loci and among individuals: association with candidate genes in ductal breast carcinoma”. Mol. Carcinog., 1996, 17, 117.

[79] Sweeney C., McClure G.Y., Fares M.Y., Stone A., Coles B.F., Thompson P.A. et al.: “Association between survival after treatment for breast cancer and glutathione S-transferase P1 Ile105Val polymorphism”. Cancer Res., 2000, 60, 5621.

[80] Linhares J.J., Da Silva I.D., De Souza N.C., Noronha E.C., Ferraro O., De Carvalho C.V. et al.: “Genetic polymorphism of GSTM1 in women with breast cancer and interact with reproductive history and several clinical pathologies”. Biol. Res., 2005, 38, 273.

[81] Zuppan P., Hall J.M., Lee M.K., Ponglikitmongkol M., King M.C.: “Possible linkage of the estrogen receptor gene to breast cancer in a family with lateonset disease”. Am. J. Hum. Genet., 1991, 48, 1065.

[82] Stavrou I., Zois C., Chatzikyriakidou A., Georgiou I., Tsatsoulis A.: “Combined estrogen receptor alpha and estrogen receptor beta genotypes influence the age of menarche”. Hum. Reprod., 2006, 21, 554.

[83] Wedren S., Lovmar L., Humphreys K., Magnusson C., Melhus H., Syvanen A.C. et al.: “Oestrogen receptor alpha gene haplotype and postmenopausal breast cancer risk: a case control study”. Breast Cancer Res., 2004, 6, R437.

[84] Boyapati S.M., Shu X.O., Ruan Z.X., Cai Q., Smith J.R., Wen W. et al.: “Polymorphisms in ER-alpha gene interact with estrogen receptor status in breast cancer survival”. Clin. Cancer Res., 2005, 11, 1093.

[85] Shin A., Kang D., Nishio H., Lee M.J., Park S.K., Kim S.U. et al.: “Estrogen receptor alpha gene polymorphisms and breast cancer risk”. Breast Cancer Res. Treat., 2003, 80, 127.

[86] Andersen T.I., Heimdal K.R., Skrede M., Tveit K., Berg K., Borresen A.L.: “Oestrogen receptor (ESR) polymorphisms and breast cancer susceptibility”. Hum. Genet., 1994, 94, 665.

[87] Cai Q., Shu X.O., Jin F., Dai Q., Wen W., Cheng J.R. et al.: “Genetic polymorphisms in the estrogen receptor alpha gene and risk of breast cancer: results from the Shanghai Breast Cancer Study”. Cancer Epidemiol. Biomarkers Prev., 2003, 12, 853.

[88] Yaich L., Dupont W.D., Cavener D.R., Parl F.F.: “Analysis of the PvuII restriction fragment-length polymorphism and exon structure of the estrogen receptor gene in breast cancer and peripheral blood”. Cancer Res., 1992, 52, 77.

[89] van Duijnhoven F.J., Peeters P.H., Warren R.M., Bingham S.A., Uitterlinden A.G., van Noord P.A. et al.: “Influence of estrogen receptor alpha and progesterone receptor polymorphisms on the effects of hormone therapy on mammographic density”. Cancer Epidemiol Biomarkers Prev., 2006, 15, 462.

[90] Onland-Moret N.C., van Gils C.H., Roest M., Grobbee D.E., Peeters P.H.: “The estrogen receptor alpha gene and breast cancer risk (The Netherlands)”. Cancer Causes Control, 2005, 16, 1195.

[91] Slattery M.L., Sweeney C., Herrick J., Wolff R., Baumgartner K., Giuliano A. et al.: “ESR1, AR, body size, and breast cancer risk in Hispanic and non-Hispanic white women living in the Southwestern United States”. Breast Cancer Res. Treat., 2006, 105, 327.

[92] Hsiao W.C., Young K.C., Lin S.L., Lin P.W.: “Estrogen receptoralpha polymorphism in a Taiwanese clinical breast cancer population: a case-control study”. Breast Cancer Res., 2004, 6, R180.

[93] Zhang Q.X., Borg A., Wolf D.M., Oesterreich S., Fuqua S.A.: “An estrogen receptor mutant with strong hormone-independent activity from a metastatic breast cancer”. Cancer Res., 1997, 57, 1244.

[94] Iwase H., Kobayashi S., Iwata H., Yamashita T., Ito K., Toyama T. et al.: “Molecular analysis of the estrogen receptor (ER) gene in association with ER negativity in breast cancer”. Gan To Kagaku Ryoho, 1996, 23 (suppl.) 161.

[95] Yu J.C., Hsu H.M., Chen S.T., Hsu G.C., Huang C.S., Hou M.F. et al.: “Breast cancer risk associated with genotypic polymorphism of the genes involved in the estrogen-receptor-signaling pathway: a multigenic study on cancer susceptibility”. J. Biomed. Sci, 2006, 13, 419.

[96] Vasconcelos A., Medeiros R., Veiga I., Pereira D., Carrilho S., Palmeira C. et al.: “Analysis of estrogen receptor polymorphism in codon 325 by PCR-SSCP in breast cancer: association with lymph node metastasis”. Breast J., 2002, 8, 226.

[97] Roodi N., Bailey L.R., Kao W.Y., Verrier C.S., Yee C.J., Dupont W.D. et al.: “Estrogen receptor gene analysis in estrogen receptor-positive and receptor-negative primary breast cancer”. J. Natl. Cancer Inst., 1995, 87, 446.

[98] Cai Q., Gao Y.T., Wen W., Shu X.O., Jin F., Smith J.R. et al.: “Association of breast cancer risk with a GT dinucleotide repeat polymorphism upstream of the estrogen receptor-alpha gene”. Cancer Res., 2003, 63, 5727.

[99] Poola I., Abraham J., Liu A.: “Estrogen receptor beta splice variant mRNAs are differentially altered during breast carcinogenesis”. Journal of Steroid Biochemistry & Molecular Biology, 2002, 82, 169.

[100] Murillo-Ortiz B., De la Veja H., Castillo-Medina S., Malacara J., Benitez-Bribiesca L.: “Telomerase activity, estrogen receptors (á,â), Bcl-2 expression in human breast cancer and treatment response”. BMC Cancer, 2006, 206. http://www.biomedcentral.com/1471-2407/6/206

[101] Anghel A., Raica M., Marian C., Ursoniu S., Mitrasca O.: “Combined profile of the tandem repeats CAG, TA and CA of the androgen and estrogen receptor genes in breast cancer”. J. Cancer Res. Clin. Oncol., 2006, 132, 727.

[102] Iobagiu C., Lambert C., Normand M., Genin C.: “Microsatellite profile in hormonal receptor genes associated with breast cancer”. Breast Cancer Res. Treat., 2006, 95, 153.

Abstracted / indexed in

Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,500 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.

Biological Abstracts Easily discover critical journal coverage of the life sciences with Biological Abstracts, produced by the Web of Science Group, with topics ranging from botany to microbiology to pharmacology. Including BIOSIS indexing and MeSH terms, specialized indexing in Biological Abstracts helps you to discover more accurate, context-sensitive results.

Google Scholar Google Scholar is a freely accessible web search engine that indexes the full text or metadata of scholarly literature across an array of publishing formats and disciplines.

JournalSeek Genamics JournalSeek is the largest completely categorized database of freely available journal information available on the internet. The database presently contains 39226 titles. Journal information includes the description (aims and scope), journal abbreviation, journal homepage link, subject category and ISSN.

Current Contents - Clinical Medicine Current Contents - Clinical Medicine provides easy access to complete tables of contents, abstracts, bibliographic information and all other significant items in recently published issues from over 1,000 leading journals in clinical medicine.

BIOSIS Previews BIOSIS Previews is an English-language, bibliographic database service, with abstracts and citation indexing. It is part of Clarivate Analytics Web of Science suite. BIOSIS Previews indexes data from 1926 to the present.

Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.

Submission Turnaround Time

Conferences

Top