Article Data

  • Views 1337
  • Dowloads 125

Original Research

Open Access

Technetium-99m-sestamibi scintigraphy in gynecological cancer imaging

  • J. Stelmachów1,*,
  • A. Timorek-Lemieszczuk1

1Chair and Department of Obstetrics, Gynecology and Oncology, II Faculty of Medicine. Medical University of Warsaw, Poland

DOI: 10.12892/ejgo200804309 Vol.29,Issue 4,July 2008 pp.309-312

Published: 10 July 2008

*Corresponding Author(s): J. Stelmachów E-mail: klingi@amwaw.edu.pl

Abstract

A new diagnostic method, technetium-99m-sestamibi scintigraphy, and its potential use in gynecological oncology is described. The biochemical mechanisms of uptake and retention of technetium-99m-sestamibi in neoplastic cells are presented and the grounds for the potential use of the tracer in predicting the response to first-line chemotherapy in ovarian cancer patients are discussed. Based on the available literature data and on our own studies, the sensitivity and specificity of technetium-99m-sestamibi scintigraphy in ovarian cancer diagnosis are assessed, and the current place of this method among other functional imaging methods applied in gynecological oncology is discussed. Technetium-99m-sestamibi scintigraphy seems to provide an attractive alternative method to the expensive PET imaging, and can be easily performed in most hospitals. However, further studies in a larger series of patients are necessary before this method is widely applied.

Keywords

99mTc-sestamibi scintigraphy; Ovarian cancer; Chemotherapy

Cite and Share

J. Stelmachów,A. Timorek-Lemieszczuk. Technetium-99m-sestamibi scintigraphy in gynecological cancer imaging. European Journal of Gynaecological Oncology. 2008. 29(4);309-312.

References

[1] Kahn J.K., McGhie I., Akers M.S., Sills M.N., Faber T.L., Kulkarni P.V. et al.: “Quantitative rotational tomography with 201TI and 99mTc 2-methoxy-isobutyl-isonitrile. A direct comparison in normal individuals and patients with coronary artery disease”. Circulation, 1989, 79, 1282.

[2] Chiu M.L., Kronauge J.F., Piwnica Worms D.: “Effect of mitochondrial and plasma membrane potentials on accumulation of hexakis (2 methoxyisobutyl isonitrile) technetium in cultured mouse fibroblasts”. J. Nucl. Med., 1990, 31, 1646.

[3] Piwnica-Worms D., Kronauge J.F., Chiu M.L.: “Enhancement by tetraphenylorate of Tc-99m-MIBI uptake kinetics and accumulation in cultured chick heart cells”. J. Nucl Med., 1991, 32, 1992.

[4] Hassan I.M., Sahweil A., Constantinides C.: “Uptake and kinetics of Tc99m hexakis 2-methoxyisobutyl isonitrile in benign and malignant lesions in the lungs”. Clin. Nucl. Med., 1989, 14, 330.

[5] Caner B., Kitapci M., Areas T., Erbengi G., Ugur O., Bekdik C.: “Increase accumulation of sestamibi technetium in osteosarcoma and its metastatic lymph nodes”. J. Nucl. Med., 1991, 32, 1977.

[6] O’Tauma L.A., Packard A.B., Treves S.T.: “SPECT imaging of pediatric brain tumor with hexakis (methoxyisobutylnitryle) technetium”. J. Nucl. Med., 1990, 31, 2040.

[7] Aktolun C., Bayhan H., Kir M.: “Clinical experience with Tc-99m mibi imaging in patients with malignant tumours. Preliminary results and comparison with TI-201”. Clin. Nucl. Med., 1992, 17, 171.

[8] Dadparvar S., Chevres A., Tulchinsky M., Krischna-Badrinath L., Khan A.S., Slizofski W.J.: “Clinical utility of technetium-99m methoxyisobutylisonitrole imaging in differentiated thyroid carcinoma: comparison in thalium-201 and iodine-131 Na scintigraphy, and serum thyroglobulin quantitation”. Eur. J. Nucl. Med., 1995, 22, 1330.

[9] Khalkhali I., Cutrone J.A., Mena I.: “Scintimammography: the complementary role of Tc-99m sestamibi prone breast imaging for the diagnosis of breast carcinoma”. Radiology, 1995, 196, 421.

[10] Aktolun C., Bayhan H., Pabucco Y.: “Assessment of tumor necrosis and detection of mediastinal lymph node metastases in bronchial carcinoma with technetium-99m sestamibi imaging: comparison with CT scan”. Eur. J. Nucl. Med., 1994, 21, 973.

[11] Naddaf S.Y., Akisik M.F., Aziz M., Omar W.S., Hirschfeld A., Masdeu J. et al.: “Comparison between 201 TI-chloride and 99Tcm-sestamibi SPECT brain imaging for differentiating intracranial lymphoma from non-malignant lesions in AIDS patients”. Nucl. Med. Commun., 1998, 19, 47.

[12] Zor E., Stokkel M.P., Ozalp S., Vardarelli E., Yalcin O.T., Ak I.: “F18-FDG coincidence-PET in patients with suspected gynecological malignancy”. Acta Radiol., 2006, 47, 612.

[13] Grisaru D., Almog B., Levine C., Metser U., Fishman A., lerman H.: “The diagnostic accuracy of 18F-fluorodeoxyglucose PET/CT in patients with gynecological malignancies”. Gynecol. Oncol., 2004, 94, 680.

[14] Havrilesky L.J., Kulasingam S.L., Matchar D.B., Myers E.R.: “FDG-PET for management of cervical and ovarian cancer”. Gynecol. Oncol., 2005, 97, 183.

[15] Lai C.H., Yen T.C., Chang T.C.: “Positron emission tomography imaging for gynecologic malignancy”. Curr. Opin. Obstet. Gynecol., 2007, 19, 37.

[16] Sironi S., Buda A., Picchio M., Perygo P., Moreni R., Pellegrini A. et al.: “Lymph-node metastasis in patients with clinical early-stage cervical cancer: detection with integrated FDG PET/CT”. Radiology, 2006, 238, 227.

[17] Bellomi M., Bonomo G., Landoni F., Villa G., Leon M.E., Bacciolone L. et al.: “Accuracy of computed tomography and magnetic resonance imaging in the detection of lymph node involvement in cervix carcinoma”. Eur. Radiol., 2005, 15, 2469.

[18] Królicki L., Stelmachów J., C´wikla J.B.: “Evaluation of th Tc99m mibi uptake in patients with suspected ovarian cancer. Initial study”. Eur. J. Nucl. Med., 1998, 25, 1014.

[19] Riche R.J.: “A critical assessment of the use of lipophilic cations as membrane potential probes”. Prog. Biophys Mol. Biol., 1984, 42, 1.

[20] Piwnica-Worms D., Kronauge J.F., Delmon L., Holman B.L., Marsh J.D., Jones A.G.: “Effect of metabolic inhibition on technetium-99m-MIBI kinetics in cultured chick myocardial cells”. J. Nucl. Med., 1990, 31, 464.

[21] Piwnica-Worms D., Kronauge J.F., Chiu M.L.: “Uptake and retension of hexakis (2-methoxyisobutyl isonitrile) technetium (I) in cultured chick myocardial cells”. Circulation, 1990, 82, 1826.

[22] Kronauge J.F., Chiu M.L., Cone J.S., Davison A., Holman B.L., Jones A.G., Piwnica-Worms D.: “Comparison of neutral and cationic myocardial perfusion agents: characteristics of accumulation in cultured cells”. Nucl. Med. Biology, 1992, 19, 141.

[23] Crane P., Laliberte R., Heminway S., Thoolen M., Orlandi C.: “Effect of mitochondrial viability and metabolism on technetium-99-m-sestamibi myocardial retension”. Eur. J. Nucl. Med., 1993, 20, 20.

[24] Backus M., Piwnica-Worms D., Hockett D., Kronauge J., Lieberman M., Ingram P., LeFurgey A.: “Microprobe analysis of Tc-MIBI in heart cells: calculation of mitochondrial membrane potential”. Am. J. Physiol., 1993, 265, 178.

[25] Chernoff D.M., Strichartz G.R., Piwnica-Worms D.: “Membrane potential determination in large unilamellar vesicles with hexakis (2-methoxyisobutylisonitrile) technetium (I)”. Biochim. Biophys Acta, 1993, 1147, 262.

[26] Piwnica-Worms D., Chiu M. L., Budding M., Kronauge J.F., Kramer R.A., Croop J.M.: “Functional imaging of multidrug-resistant P-glycoprotein with an organotechnetium complex”. Cancer Res., 1993, 53, 977.

[27] Piwnica-Worms D., Rao V.V., Kronauge J.F., Croop J.M.: “Characterization of multidrug resistance P-glycoprotein transport function with an organotechnetium cation”. Biochemistry, 1995, 34, 12210.

[28] Ling V.: “Drug resistance and membrane alteration in mutants of mammalian cells”. Can J. Genet. Cytol., 1975, 17, 503.[29] Juliano R.L., Ling V.: “A surface glycoprotein modulation drug permeability in Chinese hamster ovary cell mutants”. Biochim. Biophys. Acta, 1976, 455, 152.

[30] Muzzammil T., Moore M.J., Ballinger J.R.: “In Vitro comparison of sestaMIBI, Tetrofosmin, and furifosmin as agents for functional imaging of multidrug resistence in tumors”. Cancer Biother. Radiopharm., 2000, 15, 339.

[31] Chin K.V., Pastan I., Gottesman M.M.: “Function and regulation of the human multidrug resistance gene”. Adv. Cancer Res., 1993, 60, 157.

[32] Rao V.V., Chiu M.L., Kronauge J.F., Piwnica-Worms D.: “Expression of recombinant human multidrug resistance P-glycoprotein in insect cells confers decreased accumulation of technetium-99m-sestamibi”. J. Nucl. Med., 1994, 35, 510.

[33] Lucker G.D., Fracasso P.M., Dobkin J., Piwnica-Worms D.: “Modulation of the multidrug resistance P-glycoprotein: detection with technetium- 99m-sestamibi in vivo”. J. Nucl. Med., 1997, 38, 369.

[34] Takamura Y., Miyoshi Y., Taguchi T., Noguchi S.: “Prediction of chemotherapeutic responce by Technetium 99m-MIBI scintigraphy In breast carcinoma patients”. Cancer, 2001, 92, 232.

[35] Fuster D., Munoz M., Pavia J., Palacin A., Bellet N., Mateos J.J. et al.: “Quantified 99m TC-MIBI scintigraphy for predicting chemotherapy response in breast cancer patients: factors that influence the level of 99m Tc-MIBI uptake”. Nucl. Med. Commun., 2002, 23, 31.

[36] Soler C., Perrot J.L., Thiffet O., Beauchesne P., Lanthier K., Boucheron S. et al.: “The role of technetium-99m sestamibi single proton emission tomography in the follow-up of malignant melanoma and detection of lymph node metastases”. Eur. J. Nucl. Med., 24, 1522.

[37] Alonso O., Delgado L., Nunez M., Vargas C., Lopera J., Andruskevicius P. et al.: “Predictive value of 99mTc-sestamibi scintigraphy in the evaluation of doxorubicin based chemotheraphy response in patients with advanced breast cancer”. Nucl. Med. Commun.,2002, 23, 765.

[38] Del Vecchio S., Salvatore M.: “99m Tc-MIBI in the evaluation of breast cancer biology”. Eur. J. Nucl. Med. Mol. Imaging, 2004, 31 (suppl.1), 88.

[39] Pace L., Catalano L., Del Vecchio S., De Renzo A., Ponti R., Salvatore B. et al.: “Washout of [99m Tc] sestaMIBI in predicting response to chemotherapy in patients with multiple myeloma”. Q J. Nucl. Med. Mol. Imaging, 2005, 49, 281.

[40] Yokogami K., Kawano H., Moriyama T., Uehara H., Sameshima T., Oku T. et al.: “Application of SPET using technetium-99m sestamibi in brain tumours and comparison with expression of the MDR-1 gene: is it possible to predict the response to chemotherapy in patients with gliomas by means of 99mTc-sestamibi SPET?”. Eur. J. Nucl. Med., 1998, 25, 401.

[41] Kao C.H., Hsieh J.F., Tai S.C., Ho Y.J., Lee J.K.: “Quickly predicting chemotherapy response to paclitaxel-based therapy in non-small cell lung cancer by early technetium-99m methoxyisobutylisonitrile chest single-photon-emission computed tomography”. Clin. Cancer Res., 2000, 6, 820.

[42] Kapucu L.O., Akyuz C., Vural G., Oguz A., Atasever T., Buyukpamukcu M., Unlu M.: “Evaluation of therapy response in children with untreated malignant lymphomas using technetium-99m-sestamibi”. J. Nucl. Med., 1997, 38, 243.

[43] C ´ wikla J.B., Timorek A., Stelmachów J., Ruszczyn´ska M., Kupryjanczyk J., Kolasin´ska A.D., Królicki L.: “Prediction of response after cytotoxic chemotherapy In patients with gynecological malignancy using radioisotope 99Tc-sestamibi”. Eur. Radiol., 2000 (suppl. 1), 2, S:124.

[44] Goldstein L.J.: “MDR1 gene expression in solid tumours”. Eur. J. Cancer, 1996, 32, 1039.

[45] Bourhis J., Goldstein L.J., Riou G., Pastan I., Gottesman M.M., Benard J.: “Expression of a human multidrug resistence gene in ovarian carcinomas”. Cancer Res., 1989, 49, 5062.

[46] Marshall C., Eremin J., El-Sheemy M., Eremin O., Griffiths P.A.: “Monitoring the response of large (> 3 cm) and locally advanced (T3-4,N 0-2) breast cancer to neoadjuvant chemotherapy using 99mTc-sestamibi uptake”. Nucl. Med. Commun., 2005, 26, 9.

[47] Dunnwald L.K., Gralow J.R., Eblis G.R., Livingston R.B., Linden H.M., Lawton T.J. et al.: “Residual tumor uptake of [99mTc]-sestamibi after neoadjuvant chemotherapy for locally advanced breast carcinoma predicts survival”. Cancer, 2005, 103, 680.

Abstracted / indexed in

Web of Science (WOS) (On Hold)

Journal Citation Reports/Science Edition

Google Scholar

JournalSeek

Submission Turnaround Time

Top