Article Data

  • Views 445
  • Dowloads 111

Original Research

Open Access

Comparison of the molecular classification with FIGO stage and histological grade on endometrial cancer

  • B. Cai1
  • L. Liu1,2
  • X. W. Xi1
  • Y. P. Zhu1
  • G. Z. Lu3
  • Y. X. Yang1
  • X.P. WAN1,*,

1Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated First People's Hospital, Shanghai, China

2Departments of Medicine and Medical Biophysics, University of Toronto, Toronto, Canada

3Department of Pathology, Shanghai Jiao Tong University Affiliated First People's Hospital, Shanghai, China

DOI: 10.12892/ejgo200706451 Vol.28,Issue 6,November 2007 pp.451-460

Published: 10 November 2007

*Corresponding Author(s): X.P. WAN E-mail:

Abstract

Purpose of investigation: To classify endometrial cancers based on gene expression profiling, and to compare the prognostic value of the classification systems based on gene expression, grade, and stage. Methods: cDNA microarray was carried out in 32 endometrioid endometrial cancers. Differentially expressed genes were identified among tumor tissues of different grades and stages. The classification and prognosis comparison analysis was performed between histological grades, FIGO stages and gene expression profiles. Results: Class comparison analysis between different grade and stage endometrial cancer revealed 33 genes that are differentially expressed in tumors of different grades, ten in those of different stages, and 104 in a combined classification of grades and stages (p < 0.001). Conclusion: The cDNA microarray technique is a feasible way to generate gene expression profiles of endometrial cancer. Classification based on gene expression patterns may be more accurate than histological grade and FIGO stage classification in predicting the prognosis of tumors.

Keywords

Gene expression profiling; Endometrial carcinoma; Classification; Prognosis

Cite and Share

B. Cai,L. Liu,X. W. Xi,Y. P. Zhu,G. Z. Lu,Y. X. Yang,X.P. WAN. Comparison of the molecular classification with FIGO stage and histological grade on endometrial cancer. European Journal of Gynaecological Oncology. 2007. 28(6);451-460.

References

[1] Amant F., Moerman P., Neven P., Timmerman D., Van Limbergen E., Vergote I.: "Endometrial cancer". Lancet, 2005, 366, 491.

[2] American College of Obstetricians and Gynecologists: "ACOG practice bulletin, clinical management guidelines for obstetriciangynecologists, number 65, August 2005: management of endometrial cancer". Obstet. Gynecol., 2005, 106, 413.

[3] Bucca G., Carruba G., Saetta A., Muti P., Castagnetta L., Smith C.P.: "Gene expression profiling of human cancers". Ann. N Y Acad Sci., 2004, 1028, 28.

[4] Quackenbush J.: "Microa订ay analysis and tumor classification" N. Engl. J. Med., 2006, 354, 2463.

[5] Sorlie T., Perou C.M., Tibshirani R., Aas T., Geisler S., Johnsen H et al.: "Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications". Proc. Natl. Acad. Sci. USA, 2001, 98, 10869.

[6] Alizadeh A.A., Eisen M.B.. Davis R.E., Ma C., Lossos I.S,. Rosenwald A et al.: "Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling". Nature, 2000, 403, 503.

[7] Dave S.S., Fu K., Wright G.W., Lam L.T., Kluin P., Boerma E.J et al.: "Molecular diagnosis of Burkitt's lymphoma". N. Engl. J. Med., 2006, 354, 2431.

[8] van't Veer L.J., Dai H., van de Vijver M.J., He Y.D., Hart A.A., Mao M. et al.: "Gene expression profiling predicts clinical outcome of breast cancer". Nature, 2002, 415, 530.

[9] Ouellet V., Provencher D.M.. Maugard C.M., Le P age C., Ren F., Lussier C. et al.: "Discrimination between serous low malignant potential and invasive epithelial ovarian tumors using molecular profiling". Oncogene, 2005, 24, 4672.

[10] Eisen M.B., Spellman P.T., Brown P.O., Botstein D.: "Cluster analysis and display of genome-wide expression patterns". Proc Natl. Acad. Sci USA, 1998, 95, 14863.

[11] Kitchener H.: "Management of endometrial cancer". Eur. J. Surg Oneal., 2006, 32, 838.

[12] Mutter G.L., Baak J.P., Fitzgerald J.T. et al.: "Global expression changes of constitutive and hormonally regulated genes during endometrial neoplastic transformation". Gynecol. Oneal., 2001, 83, 177.

[13] Gunter Kieback D., Fischer D.C.: "Gene expression profile m endometrioid endometrial carcinoma". Gynecol. Oneal., 2001, 83, 175.

[14] Planaguma J., Diaz-Fuertes M., Gil-Moreno A., Abal M., Monge M., Garcia A. et al.: "A differential gene expression profile reveals overexpression of RUNXI/AML! in invasive endometrioid carcinoma". Cancer Res., 2004, 64, 8846.

[15] Smid-Koopman E., Blok L.J., Helmerhorst T.J., Chadha-Ajwam S., Burger C.W., Brinkmann A.O. et al.: "Gene expression profiling in human endometrial cancer tissue samples: utility and diagnostic value". Gynecol. Oneal., 2004, 93, 292.

[16] Ferguson S.E., Olshen A.B., Viale A, Awtrey C.S., Barakat R.R., Boyd J.: "Gene expression profiling of tamoxifen-associated uterine cancers: evidence for two molecular classes of endometrial carcinoma". Gynecol. Oneal.. 2004, 92, 719.

[17] Risinger J.I., Maxwell G.L., Chandrarnouli G.V., Jazaeri A., Aprelikova O., Patterson T. et al.: "Microarray analysis reveals distinct gene expression profiles among different histologic types of endometrial cancer". Cancer Res., 2003, 63, 6.

[18] Maxwell G.L., Chandramouli G.V., Dainty L., Litzi T.J., Berchuck A., Barrett J.C. et al.: "Microarray analysis of endometrial carcinomas and mixed mullerian tumors reveals distinct gene expression profiles associated with different histologic types of uterine cancer". Clin. Cancer Res., 2005, 11, 4056.

[19] Bidus M.A., Risinger J.I., Chandramouli G.V., Dainty L.A., Litzi T.J., Berchuck A. et al.: "Prediction of lymph node metastasis in patients with endometrioid endometrial cancer using expression microarray". Clin. Cancer Res., 2006, 12, 83.

[20] Ferguson S.E., Olshen A.B., Viale A., Barakat R.R., Boyd J "Stratification of intermediate-risk endometrial cancer patients into groups at high risk or low risk for recurrence based on tumor gene expression profiles". Clin. Cancer Res., 2005, 11, 2252.

[21] Takahashi S., Hasebe T., Oda T., Sasaki S., Kinoshita T., Konishi M. et al.: "Cytoplasmic expression of laminin gamma2 chain correlates with postoperative hepatic metastasis and poor prognosis in patients with pancreatic ductal adenocarcinoma". Cancer, 2002, 94, 1894.

[22] Hofer M.D., Kuefer R., Varambally S., Li H., Ma J., Shapiro G.I et al.:'The role of metastasis-associated protein I in prostate cancer progression". Cancer Res., 2004, 64, 825.

[23] Byrne J.A., Balleine R.L., Schoenberg Fejzo M., Mercieca J., Chiew Y.E., Livnat Y. et al.: "Tumor protein D52 (TPD52) is overexpressed and a gene amplification target in ovarian cancer". Int. J. Cancer, 2005, 117, 1049.

[24] Yamamura J., Miyoshi Y,Tamaki Y., Taguchi T., Iwao K., Monden M. et al.: "mRNA expression level of estrogen-inducible gene, alpha 1-antichymotrypsin, is a predictor of early tumor recurrence in patients with invasive breast cancers". Cancer Sci., 2004, 95, 887.

[25] Park K., Kim K., Rho S.B., Choi K., Kim D., Oh S.H. et al.: "Homeobox Msx l interacts with p53 tumor suppressor and inhibits tumor growth by inducing apoptosis". Cancer Res., 2005, 65, 749.

[26] Kawamura-T suzuku J., Suzuki T., Yoshida Y., Yamamoto T "Nuclear localization of Tob is important for regulation of its antiproliferative activity". Oncogene, 2004, 23, 6630.

[27] Wang L., Yu J., Ni J., Xu X.M., Wang J., Ning H. et al.: "Extracellular matrix protein 1 (ECMl ) is over-expressed in malignant epithelial tumors". Cancer Lett., 2003, 200, 57.

Abstracted / indexed in

Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,500 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.

Biological Abstracts Easily discover critical journal coverage of the life sciences with Biological Abstracts, produced by the Web of Science Group, with topics ranging from botany to microbiology to pharmacology. Including BIOSIS indexing and MeSH terms, specialized indexing in Biological Abstracts helps you to discover more accurate, context-sensitive results.

Google Scholar Google Scholar is a freely accessible web search engine that indexes the full text or metadata of scholarly literature across an array of publishing formats and disciplines.

JournalSeek Genamics JournalSeek is the largest completely categorized database of freely available journal information available on the internet. The database presently contains 39226 titles. Journal information includes the description (aims and scope), journal abbreviation, journal homepage link, subject category and ISSN.

Current Contents - Clinical Medicine Current Contents - Clinical Medicine provides easy access to complete tables of contents, abstracts, bibliographic information and all other significant items in recently published issues from over 1,000 leading journals in clinical medicine.

BIOSIS Previews BIOSIS Previews is an English-language, bibliographic database service, with abstracts and citation indexing. It is part of Clarivate Analytics Web of Science suite. BIOSIS Previews indexes data from 1926 to the present.

Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.

Submission Turnaround Time

Conferences

Top