Article Data

  • Views 380
  • Dowloads 101

Original Research

Open Access

K-ras gene point mutations and p21 ras immunostaining in human ovarian tumors

  • A. Semczuk1,*,
  • K. Postawski1
  • D. Przadka2
  • K. Rozynska3
  • A. Wrobel4
  • E. Korobowicz5

12nd Department of Gynecology, University School of Medicine, Lublin, Poland

2Cytogenetic Laboratory, University School of Medicine, Lublin, Poland

3Department of Human Genetics, University School of Medicine, Lublin, Poland

4Department of Phamiacology, University School of Medicine, Lublin, Poland

5Department of Pathology, University School of Medicine, Lublin, Poland

DOI: 10.12892/ejgo200404484 Vol.25,Issue 4,July 2004 pp.484-488

Published: 10 July 2004

*Corresponding Author(s): A. Semczuk E-mail:

Abstract

It is well recognized that genetic alterations within oncogenes, tumor suppressor genes, DNA mismatch repair and excision repair genes contribute to tumorigenesis within the human ovary. This study was undertaken to screen for the existence of K-ras gene point mutations in paraffin-embedded slides randomly selected from benign and malignant ovarian tumors applying the PCR-RFLP technique. Expression of p21ras was also assessed in 30 primary ovarian adenocarcinomas immunohistochemically. K-ras codon 12 point mutations occurred in nine of 40 (22.5%) cases. They were not identified in two benign mucinous cystadenomas, but in one out of two (50%) mucinous tumors of LMP (low malignant potential), in five out of 30 (17%) ovarian adenocarcinomas, and in one case of adenocarcinoma metastatic to the ovary. K-ras activation was also detected in one out of four (25%) sex cord-stromal cell tumors (folliculoma), and in one dysgerminoma. None of these tumors exhibited K-ras codon 13 point mutations. Gene alterations were more frequently found in mucinous than in non-mucinous (30% vs 10%) tumors, although the difference did not reach significance (p > 0.05). The frequency of K-ras point mutations was correlated neither with clinical nor with pathological variables of cancer. Cytoplasmic p21ras was expressed in all adenocarcinomas negative for K-ras point mutations, whereas one of five (20%) K-ras-positive tumors exhibited lack of immunoreactivity. In conclusion, these findings confirm the role of K-ras activation in mucinous ovarian tumors. p21ras expression is not necessarily associated with K-ras gene alterations in human ovarian adenocarcinomas.

Keywords

K-ras; Ovarian cancer; PCR; RFLP

Cite and Share

A. Semczuk,K. Postawski,D. Przadka,K. Rozynska,A. Wrobel,E. Korobowicz. K-ras gene point mutations and p21 ras immunostaining in human ovarian tumors. European Journal of Gynaecological Oncology. 2004. 25(4);484-488.

References

[1] Matias-Guin X., Prat J.: "Molecular pathology of ovarian carcinomas". Virchows Arch., 1998, 433, 103.

[2] Aunoble B., Sanches R., Didier E., Bignon Y.J.: "Major oncogenes and tumor suppressor genes involved in epithelial ovarian cancer". Int. J. Oneal., 2000, 16, 567.

[3] Hesketh R.: "The oncogene and tumour suppressor gene". Facts Book. 2"'ed., San Diego, Academic Press, 1997, 319.

[4] Spandidos D.A., Sourvinos G., Tsatsanis C., Zafiropoulos A.: "Normal ras genes: Their onco-suppressor and pro-apoptotic functions". Int. J. Oneal., 2002, 21, 237.

[5] Waldmann V., Rabes H.M.: "What's new in ras genes? Physiological role of ras genes in signal transduction and significance of ras gene activation in tumorigenesis". Pathol. Res. P ract., 1996, 192, 883.

[6] Pruitt K., Der C.J.: "Ras and Rho regulation of the cell cycle and oncogenesis". Cancer Lett., 2001, 171, 1.

[7] Kiaris H., Spandidos D.A.: "Mutations of ras genes in human tumours". Int. J. Oneal., 1995, 7, 413.

[8] Wang J.Y., Chen F.M., Hsieh J.S., Huang T.J., Lin S.R.: "High frequency of K-ras codon 15 mutations in colorectal carcinomas from Taiwanese patients". Int. J. Mo/. Med., 2002, 10 (suppl.), S47.

[9] Varras M.N., Sourvinos G., Diakomanolis E., Koumantakis E., Flouris G.A., Lekka-Katsouli J. et al.: "Detection and clinical correlations of ras gene mutations in human ovarian tumors". Onealogy, 1999, 56, 89.

[10] Enomoto T., Weghorts C.M., Inoue M., Tanizawa 0., Rice J.: "Kras activation occurs frequently in mucinous adenocarcinomas and rarely in other common epithelial tumors of the human ovary". Am. J. Pathol., 1991, 139, 777.

[11] Fujita M., Enomoto T., Inoue M., Tanizawa 0., Ozaki M., Rice J.M. et al.: "Alteration of the p53 tumor suppressor gene occurs independently of K-ras activation and more frequently in serous adenocarcinomas than in other common epithelial tumors of the human ovary". Jpn. J. Cancer Res., 1994, 85, 1247.

[12] Ichikawa Y., Nishida M., Suzuki H., Yoshida S., T sunoda H., Kubo T. et al.: "Mutation of K-ras protooncogene is associated with histological subtypes in human mucinous ovarian tumors". Cancer Res., 1994, 54, 33.

[13] Cautrecasas M., Villanueva A., Matias-Guiu X., Prat J.: "K-ras mutations in mucinous ovarian tumors: a clinicopathologic and molecular study of 95 cases". Cancer, 1997, 79, 1581.

[14] Morita K., Ono Y., Fukui H., Tomita S., Ueda Y., Terano A. et al.: "Incidence of p53 and K-ras alterations in ovarian mucinous and serous tumors". Pathol. Int., 2000, 50, 219.

[15] Garrett A.P., Lee K.R., Colitti C.R., Muto M.G., Berkowitz R.S., Mok S.C.: "K-ras mutation may be an early event in mucinous ovarian tumorigenesis". Int. J. Gynecol. Pathol., 2001, 20, 224.

[16] Mok S.C.-H., Bell D.A., Knapp R.C., Fishbaugh P.M., Welch W.R., Muto M.G. et al.: "Mutation of K-ras protooncogene in human epithelial tumors of borderline malignancy". Cancer Res., 1993, 53, 1489.

[17] Teneriello M.G., Elbina M., Linnoila RI., Henry M., Nash J.D., Park R.C. et al.: "p53 and Ki-ras gene mutations in epithelial ovarian neoplasms". Cancer Res., 1993, 53, 3103.

[18] Mandai M., Konishi I., Kuroda H., Komatsu T., Yamamoto S., Nanbu K. et al.: "Heterogeneous distribution of K-ras-mutated epithelia in mucinous ovarian tumors with special reference to histopathology". Hum. Pathol., 1998, 28, 34.

[19] Scully R.E., Bonfiglio T.A., Kurman R.J., Silverberg S.G., Wilkinson E.J. (ed): "Histological typing of female genital tract tumours". 2"'ed., Springer, Berlin, 1994.

[20] Semczuk A., Berbec H., Kostuch M., Cybulski M., Wojcierowski J., Baranowski W.: "K-ras gene point mutations in human endometrial carcinomas: Correlation with clinicopathological features and patients'outcome". J. Cancer Res. Clin. Oncol., 1998, 124, 695.

[21] Stenzel A., Semczuk A., Rozynska K., Jakowicki J., Wojcierowski J.: "'Low-risk'and 'high-risk'HPV-infection and K-ras gene point mutations in human cervical cancer: A study of 31 cases". Pathol. Res. P ract., 2001, 197, 597.

[22] Semczuk A., Miturski R., Baranowski W., Jakowicki J.A.: "ras p21 immunohistochemical detection in human endometrial carcinomas". Gynecol. Obstet. Invest., 1997, 44, 132.

[23] Miturski R., Semczuk A., Jakowicki J.A.: "Expression of ras p21 in the stromal cells of human neoplastic endometrium". Eur. J. Gynaecol. Oneal., 1998, 19, 308.

[24] Semczuk A., Berbec H., Kostuch M., Kotarski J., Wojcierowski J.: "Detection of K-ras mutations in cancerous lesions of human endometrium". Eur. J. Gynaecol. Oneal., 1997, 18, 80.

[25] Semczuk A., Schneider-Stock R., Berbec H., Marzec B., Jakowicki J.A., Roessner A.: "K-ras exon 2 gene point mutations in endometrial cancer". Cancer Lett., 2001, 164, 207.

[26] Fujita M., Enomoto T., Murata Y: "Genetic alterations in ovarian carcinoma with specific reference to histological subtypes". Mol. Cell Endocrinol., 2003, 202, 97.

[27] Suzuki M., Saito S., Saga Y., Ohwada M., Sato I.: "Mutation of Kras protooncogene and loss of heterozygosity on 6q27 in serous and mucinous ovarian carcinomas". Cancer Genet. Cytogenet., 2000, 118, 132.

[28] Haas C.J., Diebold J., Hirschmann A., Rohrbach H., Lohrs U.: "In serous ovarian neoplasms the frequency of Ki-ras mutations correlates with their malignant potential". Virchows Arch., 1999, 434, 117.

[29] Singer G., Kurman R.J., Chang H.W., Cho S.K., Shih J.M.: "Diverse tumorigenic pathways in ovarian serous carcinoma". Am. J. Pathol., 2002, 160, 1223.

[30] Singer G., Shih I.M., Truskinovsky A., Umudum H., Kurman R.J.: "Mutational analysis of K-ras segregates ovarian serous carcinomas into two types: invasive MPSC (Low-grade tumor) and conventional serous carcinoma (High-grade tumor)". Int. J. Gynecol. Pathol., 2003, 22, 37.

[31] Ortiz B.H., Ailawadi M., Colitti C., Muto M.G., Deavers M., Silva E.G. et al.: "Second primary or recurrence? Comparative patterns of p53 and K-ras mutations suggest that serous borderline ovarian tumors and subsequent serous carcinomas are unrelated tumors". Cancer Res., 2001, 61, 7264.

[32] Gemignani M.L., Schlaerth A.C., Bogomolniy F., Barakat R.R., Lin O., Soslow R. et al.: "Role of KRAS and BRAF gene mutations in mucinous ovarian carcinoma". Gynecol. Oneal., 2003, 90, 378.

[33] Gulbis B., Galand P.: "Immunodetection of the p2l-ras products in human normal and preneoplastic tissues and solid tumors: A review". Hum. Pathol., 1993, 24, 1271.

[34] Yaginuma Y., Yamashita K., Kuzumaki N., Fujita M., Shimizu T.: "ras oncogene product p21 expression and prognosis of human ovarian tumors". Gynecol. Oneal., 1992, 46, 45.

[35] Scarnbia G., Masciullo V., Benedetti-Panici P., Marone M., Ferrandina G., Todaro N. et al.: "Prognostic significance of ras/p2 I alterations in human ovarian cancer". Br. J. Cancer, 1997, 75, 1547.

[36] Konishi N., Enomoto T., Buzard G., Ohshima M., Ward J.M., Rice J.M.: "K-ras activation and ras p21 expression in latent prostatic carcinoma in Japanese men". Cancer, 1992, 69, 2293.

[37] Tsuda T., Mochizuki M., Wakasa H.: "Detection of c-ras gene mutation and expression of p21 protein in dysplasias and carcinomas complicating ulcerative colitis". J. Gastroenterol., 1995, 30 (suppl. 8), 30.

[38] Kasper H.-U., Schneider-Stock R., Mellin W., Roessner A.: "p21 protein expression and ms-oncogene mutations in gastric carcinoma: Correlation with clinical data". Int. J. Oneal., 1998, 12, 69.

Abstracted / indexed in

Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,500 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.

Biological Abstracts Easily discover critical journal coverage of the life sciences with Biological Abstracts, produced by the Web of Science Group, with topics ranging from botany to microbiology to pharmacology. Including BIOSIS indexing and MeSH terms, specialized indexing in Biological Abstracts helps you to discover more accurate, context-sensitive results.

Google Scholar Google Scholar is a freely accessible web search engine that indexes the full text or metadata of scholarly literature across an array of publishing formats and disciplines.

JournalSeek Genamics JournalSeek is the largest completely categorized database of freely available journal information available on the internet. The database presently contains 39226 titles. Journal information includes the description (aims and scope), journal abbreviation, journal homepage link, subject category and ISSN.

Current Contents - Clinical Medicine Current Contents - Clinical Medicine provides easy access to complete tables of contents, abstracts, bibliographic information and all other significant items in recently published issues from over 1,000 leading journals in clinical medicine.

BIOSIS Previews BIOSIS Previews is an English-language, bibliographic database service, with abstracts and citation indexing. It is part of Clarivate Analytics Web of Science suite. BIOSIS Previews indexes data from 1926 to the present.

Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.

Submission Turnaround Time

Conferences

Top